K-medoid-style Clustering Algorithms for Supervised Summary Generation
نویسندگان
چکیده
This paper centers on the discussion of k-medoid-style clustering algorithms for supervised summary generation. This task requires clustering techniques that identify class-uniform clusters. This paper investigates such a novel clustering technique we term supervised clustering. Our work focuses on the generalization of k-medoid-style clustering algorithms. We investigate two supervised clustering algorithms: SRIDHCR (Single Representative Insertion/Deletion Hill Climbing with Restart) and SPAM, a variation of PAM. The solution quality and run time of these two algorithms as well as the traditional clustering algorithm PAM are evaluated using a benchmark consisting of four data sets. Experiments show that supervised clustering algorithms enhance class purity by 7% to 19% over the traditional clustering algorithm PAM, and that SRIDHCR finds better solutions than SPAM.
منابع مشابه
Design and Development of Algorithm for Software Components Retrieval Using Clustering and Support Vector Machine
Component Based Software Development is important area in software development. In this paper, we describe various algorithms and techniques for efficiently retrieval of components from the component repository. We discuss XNOR similarity function, clustering algorithms like k-mean, K-medoid, K-mode and supervised leaning algorithm like support vector machine. This algorithm takes input as soft...
متن کاملMACOC: A Medoid-Based ACO Clustering Algorithm
The application of ACO-based algorithms in data mining is growing over the last few years and several supervised and unsupervised learning algorithms have been developed using this bio-inspired approach. Most recent works concerning unsupervised learning have been focused on clustering, showing great potential of ACO-based techniques. This work presents an ACO-based clustering algorithm inspire...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملUsing Pivots to Speed-Up k-Medoids Clustering
Clustering is a key technique within the KDD process, with k-means, and the more general k-medoids, being well-known incremental partition-based clustering algorithms. A fundamental issue within this class of algorithms is to find an initial set of medians (or medoids) that improves the efficiency of the algorithms (e.g., accelerating its convergence to a solution), at the same time that it imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004